Hepatocytes lacking thioredoxin reductase 1 have normal replicative potential during development and regeneration.

نویسندگان

  • MaryClare F Rollins
  • Dana M van der Heide
  • Carla M Weisend
  • Jean A Kundert
  • Kristin M Comstock
  • Elena S Suvorova
  • Mario R Capecchi
  • Gary F Merrill
  • Edward E Schmidt
چکیده

Cells require ribonucleotide reductase (RNR) activity for DNA replication. In bacteria, electrons can flow from NADPH to RNR by either a thioredoxin-reductase- or a glutathione-reductase-dependent route. Yeast and plants artificially lacking thioredoxin reductases exhibit a slow-growth phenotype, suggesting glutathione-reductase-dependent routes are poor at supporting DNA replication in these organisms. We have studied proliferation of thioredoxin-reductase-1 (Txnrd1)-deficient hepatocytes in mice. During development and regeneration, normal mice and mice having Txnrd1-deficient hepatocytes exhibited similar liver growth rates. Proportions of hepatocytes that immunostained for PCNA, phosphohistone H3 or incorporated BrdU were also similar, indicating livers of either genotype had similar levels of proliferative, S and M phase hepatocytes, respectively. Replication was blocked by hydroxyurea, confirming that RNR activity was required by Txnrd1-deficient hepatocytes. Regenerative thymidine incorporation was similar in normal and Txnrd1-deficient livers, further indicating that DNA synthesis was unaffected. Using genetic chimeras in which a fluorescently marked subset of hepatocytes was Txnrd1-deficient while others were not, we found that the multigenerational contributions of both hepatocyte types to development and to liver regeneration were indistinguishable. We conclude that, in mouse hepatocytes, a Txnrd1-independent route for the supply of electrons to RNR can fully support DNA replication and normal proliferative growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Liver regeneration. 2. Role of growth factors and cytokines in hepatic regeneration.

During liver regeneration quiescent hepatocytes undergo one or two rounds of replication and then return to a nonproliferative state. Growth factors regulate this process by providing both stimulatory and inhibitory signals for cell proliferation. EGF, TGF alpha, and HGF stimulate DNA synthesis in hepatocytes in vivo and in culture but the sensitivity of cultured hepatocytes to the mitogenic ef...

متن کامل

The Human Thioredoxin System: Modifications and Clinical Applications

The thioredoxin system, comprising thioredoxin (Trx), thioredoxin reductase (TrxR) and NADPH, is one of the major cellular antioxidant systems, implicated in a large and growing number of biological functions. Trx acts as an oxidoreductase via a highly conserved dithiol/disulfide motif located in the active site ( Trp-Cys-Gly-Pro- Cys-Lys-). Different factors are involved in the regulation of T...

متن کامل

Thioredoxin Reductase Inhibition of Reporter Gene Transactivation in Yeast Lacking The Human p53 Negative Regulatory Domain Mediates

Stimulation of target gene transcription by human p53 is inhibited in budding yeast lacking the TRR1 gene encoding thioredoxin reductase. LexA/p53 fusion proteins were used to study the basis for thioredoxin reductase dependence. A fusion protein containing all 393 of the residues of p53 efficiently and specifically stimulated transcription of a LexOPLacZ reporter gene in wild-type yeast but wa...

متن کامل

Overlapping roles of the cytoplasmic and mitochondrial redox regulatory systems in the yeast Saccharomyces cerevisiae.

Thioredoxins are small, highly conserved oxidoreductases which are required to maintain the redox homeostasis of the cell. Saccharomyces cerevisiae contains a cytoplasmic thioredoxin system (TRX1, TRX2, and TRR1) as well as a complete mitochondrial thioredoxin system, comprising a thioredoxin (TRX3) and a thioredoxin reductase (TRR2). In the present study we have analyzed the functional overlap...

متن کامل

Telomerase activation in liver regeneration and hepatocarcinogenesis: Dr. Jekyll or Mr. Hyde?

The liver has a remarkable capability to restore its functional capacity following liver injury. According to the current paradigm, differentiated and usually quiescent hepatocytes are the primary cell type responsible for liver repair. As reserve compartment, bipotent hepatic progenitor cells are activated, especially if extensive loss or damage of hepatocytes with impaired replication occurs,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 123 Pt 14  شماره 

صفحات  -

تاریخ انتشار 2010